Synthesis of Tetrastilbenylmethanes by Wittig-Horner Reactions

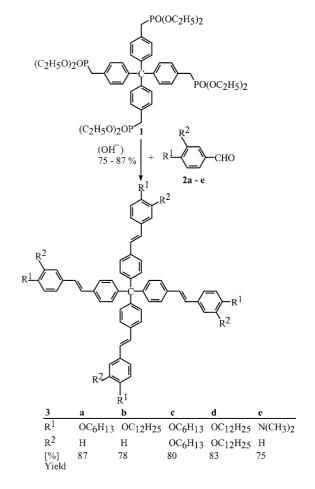
Soungkyoo Kim, [a] Peter Seus, [a] and Herbert Meier*[a]

Keywords: Photocrosslinking / Stilbenes / UV/Vis spectroscopy / Wittig-Horner reactions / Chromophores

The all-($\it E$)-configured tetrastilbenylmethanes $\it 3a-e$ and $\it 5a,b$ can be obtained by fourfold Wittig-Horner reactions. The tetrahedral arrangement of these compounds guarantees independent stilbenoid chromophores with a high chromophore density. Apart from ($\it E$)/($\it Z$) isomerization reactions, irradi-

ation leads to a three-dimensional network with isolated unchanged stilbene units.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004)


Introduction

Stilbenoid chromophores attract a great deal of attention in materials science because of their interesting properties. For many applications, a high density of the chromophores as well as the formation of amorphous films with a low crystallization tendency is important. Linear and planar stilbenoid compounds tend to aggregate due to π stacking (and possibly due to the interactions of solubilizing side chains). Therefore, a tetrahedral arrangement seems to be appropriate. Moreover, such a geometry is suitable for the photochemical generation of a three-dimensional network.

Results and Discussion

In the context of the generation of a tetrakis(squaraine), we recently prepared the fourfold phosphonate 1,^[2] which proved to be suitable for the synthesis of the tetrastilbenylmethanes 3a-e (Scheme 1). The Wittig-Horner reactions of 1 and the aldehydes 2a-e give the target compounds in good yields and with very high *trans* stereoselectivities. Until now, the few known tetrastilbenylmethanes were prepared by applying the Heck reaction^[3,4] or a modified Heck reaction via fourfold diazonium salts.^[5]

The conjugated "arms" were extended by a similar procedure, however, the yields of the reactions of 1 and the aldehydes 4a,b (Scheme 2) were somewhat lower. All the C-C double bonds of 5a,b were shown to have the *trans* configuration by ¹H NMR spectroscopy, whereby the limit of detection of a *cis* isomer was below 5%. The alkoxy chains in 5a,b as well as in 3a-d enhance the solubility of these compounds and also lower their HOMO-LUMO gaps (bandgaps). The latter effect is even stronger in 3e which contains a *para*-dimethylamino group.

Scheme 1. Preparation of the tetrastilbenylmethanes $3a\!-\!e$ by Wittig-Horner reactions

The ¹H NMR spectroscopic data of the products $3\mathbf{a} - \mathbf{e}$ and $5\mathbf{a}$, \mathbf{b} are listed in Table 1; the most characteristic ¹³C NMR signals were found for the central carbon atoms ($\delta = 64.3 \pm 0.1$ ppm) and the adjacent carbon atoms of the inner benzene rings ($\delta = 145.8 \pm 0.4$ ppm). These signals are

[[]a] Institute of Organic Chemistry, University of Mainz, Duesbergweg 10–14, 55099 Mainz, Germany Fax: (internat.) + 49-(0)6131-39-25396 E-mail: hmeier@mail.uni-mainz.de

FULL PAPER S. Kim, P. Seus, H. Meier

Scheme 2. Preparation of the four-arm compounds 5a,b with extended chromophores

typical for tetraphenylmethane cores.^[6] The other ¹³C chemical shifts are described in the Exp. Sect.

The UV absorption spectra of the four alkoxy-substituted compounds ${\bf 3a-d}$ are very similar; the maxima $\lambda_{\rm max.}$ of the long-wavelength band are at 336 \pm 3 nm, and have very high intensities (log $\epsilon=5.09\pm0.02$). The dimethylamino group in ${\bf 3e}$ causes a red-shift to $\lambda_{\rm max.}=363$ nm (log $\epsilon=5.00$). The compounds with extended chromophores ${\bf 5a}$ and ${\bf 5b}$ exhibit strong absorptions at $\lambda_{\rm max.}=375$ nm (log $\epsilon=5.32$) and $\lambda_{\rm max.}=393$ nm (log $\epsilon=5.28$), respectively.

The interactions between the four "arms" are small. The long-wavelength absorption corresponds to the chromophores of equivalent (E)-stilbenes, (E,E)-1,4-distyrylbenzenes and (E,E)-4-styrylazobenzenes, respectively. [4,7,8] Therefore, a Förster-type incoherent energy transfer between the arms on a subpicosecond time scale can be assumed; such an effect was established for a closely related compound, namely tetrakis [4-(2-{4-[2-(3,5-di-tert-butylphenyl)vinyl]phenyl}vinyl)phenyl]methane. [7]

Apart from the photophysics, the photochemistry of the stilbenoid chromophores present in 3a-e and 5a is expected to be interesting. Figure 1 (top) illustrates the monochromatic ($\lambda = 366$ nm) irradiation of **3a**. The initial curve (t = 0) corresponds to the all-(E) configuration, which is first transformed to the mono-cis form; the maximum at $\lambda = 330 \text{ nm disappears and a shoulder (sh) at 310 nm be$ comes evident. The ¹H NMR spectrum of the latter reveals the generation of the cis isomer by a new AB spin pattern at $\delta = 6.46/6.52$ ppm with $^3J = 11.6$ Hz. Continued irradiation at 366 nm transforms more and more trans-configured arms into *cis* arrangements: $(E,E,E,E) \rightarrow (E,E,E,Z)$ \rightarrow (E,E,Z,Z); the steric congestion around the central carbon atom is so severe that an all-(Z) isomer and even a mono-trans isomer seem to be unlikely. During irradiation at 366 nm, the light is selectively absorbed by the *trans*-configured arms; therefore, a photostationary state is avoided under these conditions. Prolonged monochromatic irradiation (t > 60 min) or, better, irradiation with a Pyrex filter ($\lambda \ge 290$ nm) leads to a new situation shown in the lower part of Figure 1. Novel maxima appeared at 270 and 290 nm. This region is characteristic of the absorptions of 1,4-dialkyl- and 1-alkoxy-4-alkylbenzenes. ¹H NMR measurement revealed at this stage a broad signal of tertiary CH protons at $\delta = 4.4$ ppm. From many other stilbenoid compounds, it is well known that C-C bond formation of the olefinic centers can occur.[1b] Since the olefinic double bonds within a molecule of 3a are too far away from each other for an intramolecular reaction, intermolecular processes must take place exclusively. Thus, a three-dimensional network of benzene with isolated stilbene chromophores (Figure 1) was generated. The solubility of the product decreased and finally we obtained a polymer.[9]

Table 1. ¹H NMR spectroscopic data for 3a-c and 5a,b measured in CDCl₃

Comp.	Benzene rings			Olefinic		OCH ₂	CH ₂	CH ₃
	inner	middle	outer	Protons		t	m	t
	AA'BB'	AA'BB'	AA'MM'	AB	^{3}J	or		or
			ABM		[Hz]	2 t		2 t
			or A ₂					
3a	7.20, 7.32		6.83, 7.38	6.90, 6.98	16.3	3.94	1.30 - 1.42, 1.74	0.89
3b	7.23, 7.37		6.86, 7.41	6.93, 7.02	16.4	3.95	1.26 - 1.44, 1.77	0.88
3c	7.22, 7.37		6.82, 6.99	6.90, 7.00	16.3	3.99	1.31 - 1.48, 1.82	0.89
			7.04			4.03		
3d	7.22, 7.37		6.82, 6.99	6.90, 7.00	16.3	3.99	1.24 - 1.47, 1.80	0.86
			7.05			4.03		
3e	7.22, 7.37		6.70, 7.37	6.88, 7.02	16.3			2.96 (s)
5a	7.26, 7.42	7.47 (s)	6.70	6.94, 7.06	16.2	3.96	1.32 - 1.48	0.89
				7.08 (s)		4.01	1.74, 1.81	
5b	7.37, 7.54	7.68, 7.89	7.02, 7.87	7.20, 7.31	16.1	4.02	1.32 - 1.48, 1.74	0.89

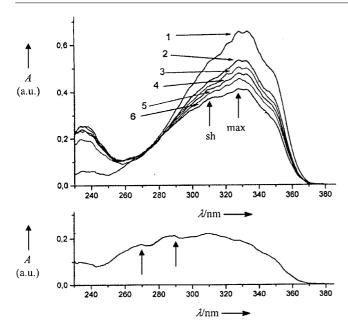


Figure 1. UV/Vis spectra (absorbance A versus wavelength λ) of the irradiation (366 nm) of **3a** in [D₈]THF; top: trans/cis isomerization; 1 (t = 0 min), 2 (5 min), 3 (15 min), 4 (25 min), 5 (35 min), 6 (45 min); bottom: the beginning of crosslinking by prolonged irradiation ($t \ge 1 \text{ h}$)

Whereas the photochemistry of compounds 3b-e and 5a is similar, the azobenzene system 5b behaves differently. Irradiation with a long-wavelength band ($\lambda_{max.} = 393$ nm) leads to selective photoisomerization at the N-N double bond in accord with our earlier study of 4,4'-distyrylazobenzenes. [8,10] The *cis*-configured azobenzene moieties then revert to the *trans* configurations thermally at ambient temperatures. We attribute the chemoselective isomerization of the N=N bond to a highly efficient *N*-inversion mechanism. [11] In contrast to azobenzene, the extended conjugation in 5b leads to strong interactions between the $n\pi^*$ and $n\pi^*$ excited states which favors this process. [11] Prolonged irradiation again leads to photocrosslinking.

Conclusion

The tetrakis(stilbenyl)methanes $3\mathbf{a} - \mathbf{e}$ and two compounds $5\mathbf{a}, \mathbf{b}$ with extended conjugation in the four "arms" were prepared by applying fourfold Wittig-Horner reactions. The all-(E)-configured chromophores hardly interact in the tetrahedral arrangement. The absorption spectra and photochemistry of $3\mathbf{a} - \mathbf{e}$, $5\mathbf{a}$ and $5\mathbf{b}$ resemble the corresponding stilbenes, 1,4-distyrylbenzenes and 4-styrylazobenzenes, respectively. Irradiation leads primarily to *trans/cis* isomerization reactions, whereby in $5\mathbf{b}$ the azo substructure is exclusively involved. Prolonged irradiation of $3\mathbf{a}$ furnishes a three-dimensional network with isolated stilbene chromophores. The process is based on C-C bond formation between the original olefinic centers. Compounds $3\mathbf{b} - \mathbf{e}$ and $5\mathbf{a}$ behave similarly.

Experimental Section

General: The melting points were measured with a Büchi melting point apparatus and are uncorrected. The UV/Vis spectra were obtained with a Zeiss MCS 320/340 spectrometer, and the IR spectra with a Beckman Acculab 4. The ¹H and ¹³C NMR spectra were recorded with a Bruker AM 400 spectrometer with CDCl₃ as solvent unless otherwise noted, using TMS as the internal standard. The FD mass spectra were obtained with a Finnigan MAT 95 apparatus. Elemental analyses were performed in the microanalytical laboratory of the Institute of Organic Chemistry at the University of Mainz, Germany.

all-(E)-Tetrakis(4-{2-[4-(hexyloxy)phenyl]vinyl}phenyl)methane (3a): A suspension of KOH (100 mg, 1.78 mmol) in DMF (20 mL) was warmed to 60 °C in a flask, which was carefully flushed with Ar. 4-Hexyloxybenzaldehyde (2a) (1.12 g, 5.43 mmol) and diethyl 4-(tris-{4-[(diethoxyphosphoryl)methyl]phenyl}methyl)benzylphosphonate (1)[2] (1.0 g, 1.09 mmol) in DMF (20 mL) were added dropwise at 0 °C to the suspension. After 24 h at room temperature, crushed ice (100 g) was added. The mixture was extracted twice with CHCl₃ (50 mL each), the organic layer dried with MgSO₄ and the solvents were evaporated. The residue was recrystallized from ethanol. Yield 1.07 g (87%), m.p. 218 °C. UV (CHCl₃): $\lambda_{max.} = 339$ nm, $\epsilon =$ 118595 cm²·mmol⁻¹. ¹³C NMR ([D₈]THF): $\delta = 14.0$ (CH₃), 22.6, 25.7, 29.2, 31.6 (CH₂), 64.4 (C_q, central C), 68.1 (OCH₂), 114.7, 125.4, 127.7, 131.3 (aromat. CH), 125.9, 128.3 (olefin. CH), 130.0, 135.3, 145.7, 158.8 (aromat. C_q) ppm. FD MS: m/z (%) = 1129 (100) [M⁺]. C₈₁H₉₂O₄ (1129.6): calcd. C 86.13, H 8.21; found C 86.15, H 8.18.

all-(*E***)-Tetrakis(4-{2-[4-(dodecyloxy)phenyl]vinyl}phenyl)methane (3b):** The preparation was performed according to the procedure described for **3a**. Recrystallization from ethanol yielded 78% of **3b** (1.25 g from 1.0 g **1**) as colorless crystals, m.p. 176 °C. UV (CHCl₃): $\lambda_{\text{max.}} = 339 \text{ nm}, \ \epsilon = 118595 \text{ cm}^2 \cdot \text{mmol}^{-1}. \ ^{13}\text{C NMR (CDCl}_3): ^{[12]} \delta = 14.1 \text{ (CH}_3), 22.7, 26.0, 29.3, 29.3, 29.4, 29.5, 29.6, 29.6, 29.6, 31.9 (CH₂, superimposed), 64.4 (C_q, central C), 68.1 (OCH₂), 114.8, 125.5, 127.7, 131.3 (aromat. CH), 126.0, 128.3 (olefin. CH), 130.1, 135.4, 145.7, 158.9 (aromat. C_q) ppm. FD MS: <math>mlz$ (%) = 1467 (100) [M + H⁺]. C₁₀₅H₁₄₀O₄ (1466.3): calcd. C 86.01, H 9.62; found C 85.79, H 9.63.

all-(*E***)-Tetrakis(4-{2-|3,4-bis(hexyloxy)phenyl|vinyl}phenyl)methane (3c):** The preparation was performed according to the procedure described for **3a**. Aldehyde **2c**^[13] and **1**^[2] yielded 80% of **3c** (1.33 g from 1.0 g **1**) as colorless crystals, m.p. 90 °C (CHCl₃/C₂H₅OH). UV (CHCl₃): $\lambda_{\text{max.}} = 339 \text{ nm}, \varepsilon = 116487 \text{ cm}^2 \text{-mmol}^{-1}. ^{13}\text{C NMR}$ (CDCl₃): ^[12] δ = 14.0 (CH₃), 22.6–31.6 (CH₂, superimposed), 64.3 (C_q, central C), 69.3, 69.4 (OCH₂), 112.0, 114.1, 120.0, 125.5, 131.3 (aromat. CH), 126.2, 128.7 (olefin. CH), 130.7, 135.3, 145.8, 149.3, 149.4 (aromat. C_q) ppm. FD MS: mlz (%) = 1531 (100) [M + H⁺]. C₁₀₅H₁₄₀O₈ (1530.3): calcd. C 82.41, H 9.22; found C 82.37, H 9.16.

all-(*E*)-Tetrakis(4-{2-[3,4-bis(dodecyloxy)phenyl]vinyl}phenyl)methane (3d): The preparation was performed according to the procedure described for 3a. Aldehyde $2d^{[14]}$ and 1 yielded 83% of 3d (1.99 g from 1.0 g 1) as colorless crystals, m.p. 75 °C (CHCl₃/C₂H₅OH). UV (CHCl₃): $\lambda_{\text{max.}} = 337$ nm, ε = 128395 cm²·mmol⁻¹. ¹³C NMR (CDCl₃): $^{[12]}\delta = 14.0$ (CH₃), 22.6–31.9 (CH₂, superimposed), 64.4 (C_q, central C), 69.4, 69.5 (OCH₂), 112.0, 114.1, 120.0, 125.5, 131.3 (aromat. CH), 126.2, 128.7 (olefin. CH), 130.7, 135.3, 145.8, 149.3, 149.4 (aromat. C_q) ppm. FD MS: mlz (%) = 2203 (100) [M⁺]. C₁₅₃H₂₃₆O₈ (2203.6): calcd. C 83.40, H 10.80; found C 83.37, H 10.78.

FULL PAPER S. Kim, P. Seus, H. Meier

all-(*E*)-Tetrakis(4-{2-[4-(dimethylamino)phenyl]vinyl} phenyl)-methane (3e): The preparation was performed according to the procedure described for 3a. Yield 75% (0.737 g from 1.0 g 1), m.p. 298 °C (CHCl₃/CH₃OH). UV (CHCl₃): $\lambda_{\text{max.}} = 363 \text{ nm}$, ε = 100348 cm²·mmol⁻¹. ¹³C NMR (CDCl₃): ^[12] δ = 40.4 (NCH₃), 64.2 (C_q, central C), 112.5, 125.1, 127.5, 131.3 (aromat. CH), 124.1, 128.7 (olefin. CH), 126.1, 135.8, 145.4, 150.1 (aromat. C_q) ppm. FD MS: m/z (%) = 901 (100) [M⁺]. C₆₅H₆₄N₄ (901.3): calcd. C 86.63, H 7.16, N 6.22; found C 86.36, H 6.98, N 6.02.

all-(E)-Tetrakis{4-[2-(4-{2-[3,4,5-tris(hexyloxy)phenyl]vinyl}-phenyl)vinylphenyl}methane (5a): The preparation was performed according to the procedure described for 3a, but the reaction time at room temperature was extended to 48 h. Aldehyde $4a^{[15]}$ and $1^{[2]}$ yielded 45% of 5a (1.15 g from 1.0 g 1) as yellow crystals, m.p. 130 °C, obtained from a solution of CHCl₃ to which C₂H₅OH was slowly added. UV (CHCl₃): $\lambda_{\text{max.}} = 375 \text{ nm}$, $\epsilon = 207024 \text{ cm}^2\text{-mmol}^{-1}$. ^{13}C NMR (CDCl₃): $^{[12]}$ $\delta = 14.0$, 14.0 (CH₃), 22.6, 22.7, 25.8, 25.8, 29.5, 30.3, 31.6, 31.8 (CH₂), 64.4 (C_q, central C), 69.4, 73.6 (OCH₂), 105.6, 125.8, 126.7, 126.8, 131.3 (aromat. CH), 127.3, 128.0, 128.5, 128.8 (olefin. CH), 132.6, 135.2, 136.6, 136.9, 138.7, 146.1, 153.4 (aromat. C_q). FD MS: mlz (%) = 2339 (100) [M + H⁺]. C₁₆₁H₂₁₂O₁₂ (2339.5): calcd. C 82.66, H 9.13; found C 82.63, H 9.14.

(E,E)-4-[2-(4-{2-[4-(Hexyloxy)phenyl]diazenyl}phenyl)vinyl]benzaldehyde (4b): A mixture of (E)-4-[2-(4-hydroxyphenyl)diazenyl]benzaldehyde (4.71 g, 20.8 mmol),[16] 1-bromohexane (8.25 g, 49.9 mmol), K₂CO₃ (6.25 g, 45.2 mmol) and KI (17 mg, 0.1 mmol) in dry dioxane (150 mL) was refluxed for 24 h. The hot solution was filtered and cooled to 5 °C. The precipitate formed was recrystallized twice from (CH₃)₂CHOH. Small red crystals were obtained (1.94 g, 30%) which melted at 83 °C. ¹H NMR (CDCl₃): $\delta = 0.90$ (t, 3 H, CH₃), 1.28-1.48 (m, 6 H, CH₂), 1.85 (m, 2 H, CH₂), 4.03 (t, 2 H, OCH₂), 6.98 (AA' part of AA'MM', 2 H, aromat. H), 7.92 (MM', 2 H, aromat. H), 7.95-8.00 (AA'BB', 4 H, aromat. H), 10.06 (s, 1 H, CHO) ppm. 13 C NMR (CDCl₃): $\delta = 14.0$ (CH₃), 22.6, 25.7, 29.1, 31.6 (CH₂), 68.5 (OCH₂), 114.9, 123.0, 125.4, 130.7 (aromat. CH), 136.9, 146.9, 156.2, 162.6 (aromat. C_q), 191.6 (CHO) ppm. FD MS: m/z (%) = 310 (100) [M⁺]. $C_{19}H_{22}N_2O_2$ (310.4): calcd. C 73.52, H 7.14, N 9.03; found C 73.19, H 7.00, N 9.33.

all-(*E*)-Tetrakis{4-[2-(4-{2-[4-(hexyloxy)phenyl]diazenyl}phenyl)-vinyl]phenyl}methane (5b): A suspension of KOC(CH₃)₃ (2.00 g, 18.0 mmol) in dry THF (30 mL) was carefully flushed with Ar. Tetraphosphonate 1 (1.0 g, 1.09 mmol) and aldehyde 4b (2.76 g, 5.43 mmol) in dry THF (30 mL) were added dropwise at 0 °C to the suspension. After stirring at room temperature for 48 h, the workup was carried out as described for 3a. Yield 1.22 g (48%), m.p. 130 °C (CHCl₃/C₂H₅OH).^[12] UV (CHCl₃): $\lambda_{\text{max.}} = 393$ nm, $\epsilon = 190000 \text{ cm}^2\text{-mmol}^{-1}$. IR (KBr): $\tilde{\nu} = 2920$, 2850, 1570, 1500, 1460, 1425, 1370, 1340, 1310, 1230, 1110, 1020, 960, 830, 720, 620 cm⁻¹. FD MS: m/z (%) = 1547 (100) [M + H⁺]. C₁₀₅H₁₀₈N₈O₄ (1546.1): calcd. C 81.57, H 7.04, N 7.25; found C 81.85, H 7.09, N 7.23.

Irradiation Experiments: The monochromatic irradiations were performed in [D₈]THF with an AMKO high-pressure xenon lamp and an interference filter ($\lambda=366$ nm). A Hanovia 450 W mercury middle-pressure lamp with Pyrex filter ($\lambda\geq290$ nm) served for the photoreactions, which were investigated by 1H NMR spectroscopy.

Acknowledgments

We are grateful to the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and the Materialwissenschaftliche Forschungszentrum der Universität Mainz for financial support.

- [1] [1a] H.-H. Hörhold, M. Helbig, D. Raabe, J. Opfermann, U. Scherf, R. Stockmann, D. Weiß, Z. Chem. 1987, 27, 126. [1b] J. L. Brédas, R. Silbey, Conjugated Polymers, Kluwer, Dordrecht 1991. [1c]H. Meier, Angew. Chem. 1992, 104, 1425; Angew. Chem. Int. Ed. Engl. 1992, 31, 1399. [1d] K. Müllen, Pure Appl. Chem. 1993, 65, 89. [1e] W. R. Salaneck, I. Lundström, B. Rånby, Conjugated Polymers and Related Materials, Oxford University Press, Oxford, 1993. [1f]J. M. Tour, Chem. Rev. 1996, 96, 537. [1g] A. Kraft, A. C. Grimsdale, A. B. Holmes, Angew. Chem. 1998, 110, 416; Angew. Chem. Int. Ed. 1998, 37, 403. [1h] K. Müllen, G. Wegner, Electronic Materials: The Oligomer Approach, Wiley-VCH, Weinheim, 1998. [11]U. Scherf, Top. Curr. Chem. 1999, 201, 163. [1j] R. E. Martin, F. Diederich, Angew. Chem. 1999, 111, 1440; Angew. Chem. Int. Ed. 1999, 38, 1350. [1k] J. L. Segura, N. Martin, J. Mater. Chem. 2000, 10, 2403. [11] H. Meier, D. Ickenroth, U. Stalmach, K. Koynov, A. Bahtiar, C. Bubeck, Eur. J. Org. Chem. 2001, 4431. [1m] A. P. H.-J. Schenning, P. Jonkheijm, E. Peeters, E. W. Meijer, J. Am. Chem. Soc. 2001, 123, 409. [1n] M. R. Robinson, S. Wang, A. J. Heeger, G. C. Bazan, Adv. Funct. Mater. 2001, 11, 413. [10] A. F. Freydank, M. G. Hamphrey, R. W. Friedrich, B. Luther-Davies, *Tetrahedron* **2002**, *58*, 1425. [1p] B. R. Cho, K. Chajara, H. J. Oh, K. H. Son, S.-J. Jeon, Org. Lett. 2002, 4, 1703. [1q] G. P. Bartholomew, I. Ledoux, S. Mukamel, G. C. Bazan, J. Zyss, J. Am. Chem. Soc. 2002, 124, 13480. [1r] A. Syamakumari, A.P. H.-J. Schenning, E. W. Meijer, Chem. Eur. J. 2002, 8, 3353. [1s] H. Meier, D. Ickenroth, Eur. J. Org. Chem. 2002, 1745 and references cited therein.
- [2] J. Gerold, U. Holzenkamp, H. Meier, Eur. J. Org. Chem. 2001, 2757.
- [3] W. J. Oldham Jr., R. J. Lachicotte, G. C. Bazan, J. Am. Chem. Soc. 1998, 120, 2987.
- [4] S. Wang, W. J. Oldham Jr., R. A. Hudack Jr., G. C. Bazan, J. Am. Chem. Soc. 2000, 122, 5695.
- [5] S. Sengupta, S. V. Sadhukhan, Tetrahedron Lett. 1998, 39, 1237
- [6] M. J. Vaickus, D. G. Anderson, Org. Magn. Res. 1980, 14, 278.
- [7] O. P. Varnavski, J. C. Ostrowski, L. Sukhomlinova, R. J. Twieg, G. C. Bazan, T. Goodson III, J. Am. Chem. Soc. 2002, 124, 1736.
- [8] H. Meier, F. Kosteyn, N. Hanold, H. Rau, G. Gauglitz, *Chem. Ber.* 1992, 125, 889.
- [9] Apart from the crosslinking, four-membered rings may also be formed in a typical *trans*-stilbene photodimerization. See for example ref.^[1c]
- [10] G. Gauglitz, P. Stößel, H. Meier, H. Rau, J. Photochem. Photobiol. A: Chem. 1995, 85, 207.
- [11] Compare the orbital and state correlation diagrams in the literature. [8]
- [12] The ¹H NMR spectroscopic data are listed in Table 1.
- [13] F. Kosteyn, G. Zerban, H. Meier, Chem. Ber. 1992, 125, 893.
- [14] H. Meier, E. Praß, G. Zerban, F. Kosteyn, Z. Naturforsch., Teil B 1988, 43, 889.
- [15] M. Lehmann, B. Schartel, M. Hennecke, H. Meier, *Tetrahedron* 1999, 55, 13377.
- [16] V. A. Burmistrov, V. Y. Kareev, J. Org. Chem. USSR 1988, 24, 1573.

Received November 6, 2003